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Abstract

We present Flow-Guided Density Ratio Learning
(FDRL), a simple and scalable approach to generative
modeling which builds on the stale (time-independent)
approximation of the gradient flow of entropy-
regularized f -divergences introduced in DGf low. In
DGf low, the intractable time-dependent density ratio
is approximated by a stale estimator given by a GAN
discriminator. This is sufficient in the case of sample
refinement, where the source and target distributions of
the flow are close to each other. However, this assump-
tion is invalid for generation and a naive application
of the stale estimator fails due to the large chasm be-
tween the two distributions. FDRL proposes to train
a density ratio estimator such that it learns from pro-
gressively improving samples during the training pro-
cess. We show that this simple method alleviates the
density chasm problem, allowing FDRL to generate im-
ages of dimensions as high as 128×128, as well as out-
perform existing gradient flow baselines on quantitative
benchmarks. We also show the flexibility of FDRL with
two use cases. First, unconditional FDRL can be eas-
ily composed with external classifiers to perform class-
conditional generation. Second, FDRL can be directly
applied to unpaired image-to-image translation with no
modifications needed to the framework. Code is publicly
available at https://github.com/ajrheng/FDRL.

1. Introduction

Among gradient flow methods, Wasserstein gradient
flows (WGF) have recently become a popular special-
ization for a variety of applications [15, 7, 1, 9]. WGFs
model the gradient dynamics on the space of probabil-
ity measures with respect to the Wasserstein metric;
these methods aim to construct the optimal path be-
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tween two probability measures — a source distribution
q(x) and a target distribution p(x), where the notion
of optimality refers to the path of steepest descent in
Wasserstein space.

Despite the immense potential of gradient flow
methods in generative modeling [1, 9, 7], applications
to high-dimensional image synthesis remain limited,
and its applications to other domains, such as class-
conditional generation and image-to-image translation
have been underexplored. A key difficulty is that ex-
isting methods to solve for the gradient flow often in-
volve complex approximation schemes. For instance,
the JKO scheme [11] necessitates estimation of the 2-
Wasserstein distance and divergence functionals, while
particle simulation methods, which involve simulating
an equivalent stochastic differential equation (SDE),
requires solving for the time-dependent marginal dis-
tribution over the flow.

A recent work on adopting gradient flows for sam-
ple refinement, DGf low [1], proposes to adopt a stale
(time-independent) estimate, given by the discrimina-
tor of a pretrained GAN, as the density ratio estimate
necessary in the corresponding SDE. While this dra-
matically simplifies the particle simulation approach,
in practice this only works when q(x) and p(x) are
close together, such as in refinement between the GAN
generated images and the true data distribution. When
the two distributions are sufficiently far apart, such as
the case of image synthesis, where q(x) is a simple prior
distribution, estimating the density ratio q(x)/p(x) be-
comes a trivial problem due to the large density chasm
[20], and use of this naive stale estimator in simulating
the SDE fails to generate realistic images.

Building upon the success of DGf low for refinement,
we expand upon the stale approximation of the den-
sity ratio estimation to high-dimensional image syn-
thesis. We propose Flow-Guided Density Ratio Learn-
ing (FDRL), a new training approach to address the
problem of accurately estimating the density ratio be-
tween the prior and the data distribution, by progres-
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Figure 1: Left: Illustration of FDRL’s training setup for the τ training iteration. For clarity, we emphasize
the choices of the f -divergence and g, the Bregman divergence function, as part of training. Right: the various
applications of FDRL, ranging from unconditional image generation to class-conditional generation by composition
with external classifiers and unpaired image-to-image translation.

sively training a density ratio estimator with evolv-
ing samples. FDRL operates exclusively in the data
space, and does not require training additional gener-
ators, unlike related particle methods [9]. Compared
to gradient flow baselines, we achieve the best quan-
titative scores in image synthesis and are the first to
scale to image dimensions as high as 128× 128. In ad-
dition, we show that our framework can be seamlessly
applied to two other critical tasks in generative model-
ing: class-conditional generation and unpaired image-
to-image translation, which have been underexplored
in the context of gradient flow methods.

2. Background

We provide a brief overview of gradient flows and
density ratio estimation. For a more comprehensive
introduction to gradient flows, please refer to [21]. A
thorough overview of density ratio estimation can be
found in [26].

Wasserstein Gradient Flows. Consider Euclidean
space equipped with the familiar L2 distance metric
(X , ‖ · ‖2). Given a function F : X → R, the curve
{x(t)}t∈R+ that follows the direction of steepest de-
scent is called the gradient flow of F :

x′(t) = −∇F (x(t)). (1)

In generative modeling, we are interested in sampling
from the underlying probability distribution of a given
dataset. Hence, instead of Euclidean space, we con-
sider the space of probability measures with finite sec-
ond moments equipped with the 2-Wasserstein metric
(P2(Ω),W2). Given a functional F : P2(Ω) → R in

the 2-Wasserstein space, the gradient flow of F is the
steepest descent curve of F . Such curves are called
Wasserstein gradient flows.

Density Ratio Estimation via Bregman Diver-
gence. Let q(x) and p(x) be two distributions over
X ∈ Rd where we have access to i.i.d samples xq ∼ q(x)
and xp ∼ p(x). The goal of density ratio estimation
(DRE) is to estimate the true density ratio r∗(x) =
q(x)
p(x) based on samples xq and xp.

We will focus on density ratio fitting under the
Bregman divergence (BD), which is a framework that
unifies many existing DRE techniques [26, 27]. Let
g : R+ → R be a twice continuously differentiable con-
vex function with a bounded derivative. The BD seeks
to quantify the discrepancy between the estimated den-
sity ratio rθ and the true density ratio r∗:

BDg(r
∗||rθ) = Ep[g(r∗(x))−g(rθ(x))+∂g(rθ(x))rθ(x)]

− Eq[∂g(rθ(x))]. (2)

In practice, we estimate the expectations in Eq. 2 us-
ing Monte Carlo samples. We can also drop the term
Ep[g(r∗(x))] during optimization as it does not depend
on the model rθ. The minimizer of Eq. 2, which we
denote θ∗, satifies rθ∗(x) = r∗(x) = q(x)/p(x). Moving

forward, we will use the hatted symbol Êp to refer to
Monte Carlo estimates for ease of notation. We con-
sider two common instances of g in this paper, namely
g(y) = 1

2 (y−1)2 and g(y) = y log y− (1 + y) log(1 + y),
which correspond to the Least-Squares Importance Fit-
ting (LSIF) and Logistic Regression (LR) objectives.
We provide the full form of the BD for these choices of
g in Appendix B.



3. Discriminator Gradient Flow

Ansari et al. propose DGf low [1], a method to per-
form sample refinement by simulating the SDE:

dxt = −∇xf
′(qt(xt)/p(xt))dt+

√
2γdwt, (3)

where dwt denotes the standard Wiener process. p(x)
represents the target distribution of refinement, while
qt(x) represents the time-evolved source distribution
q0(x). In theory, as t→∞, the stationary distribution
of the particles xt from Eq. 3 converges to the target
distribution p(x). The SDE is the equivalent particle
system of the corresponding Fokker-Planck equation,
which is the gradient flow of the functional

Ffp (q) =

∫
p(x)f(q(x)/p(x))dx + γ

∫
q(x) log q(x)dx,

(4)
where f : R+ → R is a twice-differentiable convex func-
tion with f(1) = 0. Eq. 3 can therefore be understood
as the flow which minimizes Eq. 4. The first term in
Eq. 4 is the f -divergence, which measures the discrep-
ancy between q(x) and p(x). Popular f -divergences
include the Kullback-Leibler (KL), Pearson-χ2 diver-
gence and Jensen-Shannon (JS) divergence. Mean-
while, the second term is a differential entropy term
that improves expressiveness of the flow. We list the
explicit forms of f that will be considered in this work
in Table. 2 in the Appendix.

In DGf low, the source distribution is the distribu-
tion of samples from the GAN generator, while the
target distribution is the true data distribution. The
time-varying density ratio qt(x)/p(x) is approximated
by a stale estimate rθ(x)

dxt = −∇xf
′(rθ(xt))dt+

√
2γdwt, (5)

where rθ is represented by the GAN discriminator.
The assumption underlying this approach is that the
distribution of generated samples from the GAN is
sufficiently close to the data distribution, so that
the density ratio qt(x)/p(x) is approximately constant
throughout the flow.

As we are unable to compute the marginal dis-
tributions qt(x), or equivalently estimate the time-
dependent density ratio qt(x)/p(x) in Eq. 3 a priori,
we are motivated to extend the stale formulation of
DGf low from refinement to the more difficult problem
of synthesis, i.e., generating samples from noise. In
this case, the question arises as to how well the stale
estimator approximation of the SDE behaves when the
source distribution q(x) is significantly different from
the target distribution p(x).

3.1. Where The Stale Estimator Breaks Down

We thus wish to modify the source distribution such
that q(x) is a simple prior, such as a Gaussian, while
keeping p(x) to be the true data distribution. Given
samples from q(x) and p(x), we can leverage the Breg-
man divergence to train a stale estimator and simulate
Eq. 5. However, we observe empirically that this fails
catastrophically as the density ratio estimation prob-
lem becomes trivial and the Bregman loss diverges. We
convey the key intuitions with a toy example of simple
2D Gaussians.

Consider an SDE of the form

dxt = −∇xf
′(q(xt)/p(xt))dt+

√
2γdwt, (6)

where q(x) and p(x) are both simple 2D Gaussian den-
sities. This differs from Eq. 3 as the distribution q(xt)
is time-independent, and fixed as the source Gaussian
distribution. We would like to investigate how such
an SDE, with q/p represented by a stale estimator rθ,
behaves in transporting particles from q(x) to p(x).

Although we have access to the analytical form of
the density ratio q(x)/p(x) in this example, we choose
to train a multilayer perceptron (MLP) to estimate the
density ratio using the Bregman divergence Eq. 2. This
is to evaluate the general case where we may only have
samples and not the analytic densities. We investigate
two scenarios by varying the distance between q and p,
as measured by their KL divergence (or more generally,
the f -divergences). q(x) is fixed at N (0, 0.1I), where
bold numbers represent 2D vectors. We set p(x) ∼
N (1, 0.1I) in the first case and p(x) ∼ N (6, 0.1I) in
the second.

We first train separate MLPs to estimate the den-
sity ratio, using xq and xp drawn from the respective
distributions. After convergence, we simulate a finite
number of steps of Eq. 5 on samples drawn from q(x),
with the density ratio given by the MLP. We charac-
terize the transition of particles through Eq. 5 as pa-
rameterized by a generalized kernel

q̃(x) =

∫
q(x′)Mθ(x|x′)dx′, (7)

where Mθ is the transition kernel parameterized by the
MLP. The results are shown in Fig. 2. In (a), where
the two distributions are close together, the particles
from q(x) are successfully transported to p(x). Mean-
while in (b), even after flowing for many more steps, the
particles have not converged to the target distribution.
Flowing for more steps in (b) results in the particles
drifting even further from the target (and out of the
image frame). This suggests that the stale estimator
is only appropriate in the case where the two distribu-
tions are not too far apart, which indeed corresponds
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Figure 2: Toy experiments by simulating the flow Eq. 5
with an MLP density ratio estimator. The source dis-
tribution q(x) is set as N (0, 0.1I). Blue particles repre-
sent the source particles, and orange particles represent
the same particles after flowing for K steps. (a) We set
p(x) ∼ N (1, 0.1I) and flow for K = 15 steps. (b) We
set p(x) ∼ N (6, 0.1I) and flow for K = 400 steps. We
can clearly see that particles in (a) have converged to
the target distribution, while particles in (b) have not,
demonstrating the density chasm problem.

to the assumption of DGf low that the GAN generated
images are already close to the data distribution.

This observation can be attributed to two comple-
mentary explanations. Firstly, the Bregman divergence
is optimized using samples in a Monte Carlo fashion;
when the two distributions are separated by large re-
gions of vanishing likelihood, there are insufficient sam-
ples in these regions for the model to learn an accurate
estimate of the density ratio. Consequently, the inac-
curate estimate causes the particles to drift away from
the correct direction of the target as it crosses these
regions, as seen in Fig. 2b.

The second explanation may be attributed to the
density chasm problem [20]. When two distributions
are far apart, a binary classifier (which is equivalent
to a density ratio estimator, see appendix Sec. D) can
obtain near perfect accuracy while learning a relatively
poor estimate of the density ratio. For example, in the
second case above, the neural network can trivially sep-
arate the two modes with a multitude of straight lines,
thus failing to estimate the density ratio accurately.

The eventual goal of this work is the generative mod-
eling of images, where we set our source distribution
to be a simple prior distribution, and the target dis-
tribution to be the distribution of natural images. In
such cases involving much higher-dimensional distribu-
tions, the density chasm problem will be dramatically
more pronounced, causing the stale estimator to fail to
generate realistic images. As mentioned previously, in
early experiments where we attempt to learn a density

ratio estimator with q(x) being a diagonal Gaussian or
uniform prior and p(x) represented by samples of natu-
ral images (e.g. CIFAR10), the Bregman loss diverges
early during training, leading to failed image samples.

3.2. Data-Dependent Priors

One approach to address the density chasm problem
for images is to devise a prior q(x) that is as close to the
target distribution as possible, while remaining easy to
sample from. Inspired by generation from seed distri-
butions with robust classifiers [22], we first adopted a
data-dependent prior (DDP) by fitting a multivariate
Gaussian to the training dataset:

q(x) = N (µD,ΣD),where

µD = ED[x], ΣD = ED[(x− µD]T (x− µD)] (8)

where subscript D represents the dataset. Samples
from this distribution contain low frequency features of
the dataset, such as common colors and outlines, which
we visualize in Fig. 11 of the appendix. We proceeded
to train a CNN with the Bregman divergence in the
same manner as the toy experiments, with xq drawn
from the DDP and xp from the dataset. However, we
found that the Bregman loss still diverged early during
training — the DDP alone is insufficient to bridge the
density chasm. In the next section, we describe a novel
approach to cross the chasm using flow-guided train-
ing, which when used with DDP achieves significantly
better generative performance.

4. Flow-Guided Density Ratio Learning

We propose FDRL, a training scheme that is able
to scale to the domain of high-dimensional images,
while retaining the simplicity of the stale formulation
of DGf low. Instead of merely training rθ to estimate
q(x)/p(x), our method proposes to estimate q̃(x)/p(x)
by flowing samples from q(x) at each training step with
Eq. 5. This approch is based on observations that q̃(x)
progressively approaches the target distribution as rθ
is being trained. In this formulation, q̃(x) is no longer
static but changes with rθ as θ is updated. Therefore,
unlike the toy examples of Sec. 3.1, the density ra-
tio estimator is being trained on samples that improve
with training.

We formulate our training setup as follows. Con-
sider a given training step τ , where our model has
parameters θτ from the gradient update of the pre-
vious iteration. We switch notations slightly and de-
note q′(x) as our source distribution, which is a simple
prior (such as the DDP). We propose to first draw sam-
ples x0 ∼ q′(x), and simulate Eq. 5 for K steps with



the stale estimator rθτ using the Euler-Maruyama dis-
cretization:

xk+1 = −η∇xf
′(rθτ )(xk) + νξk (9)

where ξk ∼ N (0, I), η is the step size and k ∈ [0,K−1].
We label the resultant particles as xK . The xK are
drawn from the distribution q̃τ (xK) given by

q̃τ (xK) =

∫
q′(x′)Mθτ (xK |x′)dx (10)

where Mθτ (xK |x) is the transition kernel of simulating
Eq. 9 with parameters θτ . We optimize rθτ (x) for the
τ training iteration using the Bregman divergence

L(θτ ) = Êp[∂g(rθτ (x))r(x)−g(rθτ (x))]−Êq̃τ [∂g(rθτ (x))]
(11)

where expectation over p(x) can be estimated using
samples from the dataset. We update the parameters
for the next training step τ+1 as θτ+1 ← θτ−α∇θL(θτ )
with learning rate α. The process repeats until conver-
gence. We provide pseudocode in Algorithm 1, and an
illustration of the training setup in Fig. 1. We illus-
trate our training process in Fig. 3, where we utilize
the toy example from Fig. 2b which the stale estimator
rθ = q′/p failed previously. We can see from the top
row that as τ increases, the orange samples from q̃τ ,
which are obtained by flowing the blue samples from q′

for fixed K steps, progressively approach the target dis-
tribution. In the bottom row, we plot the progression of
the mean of q̃τ as training progresses, which shows the
iterative approach towards the target distribution. To-
gether with the experiments for high-dimensional im-
age synthesis in Sec. 6, these results empirically justify
that FDRL indeed overcomes the density chasm prob-
lem, allowing the stale estimator rθ(x) to be used for
sample generation.

4.1. Convergence Distribution of FDRL

In this section, we analyze the convergence distri-
bution after training has converged. With T train-
ing steps and τ ∈ [0, T − 1], let us consider what
happens during the final training iteration T − 1.
The model has parameters θT−1 from the gradient
update of the previous iteration. Following Algo-
rithm 1, we first sample xK from the distribution
q̃T−1(xK) =

∫
q′(x′)MθT−1

(xK |x′)dx′ by running K
steps of Eq. 9. With samples xK ∼ q̃T−1(x) and
xp ∼ p(x), we optimize the BD and take the gradi-
ent step θT ← θT−1 − α∇θL. Assuming convergence,
this means by definition that the loss gradient of the
final step ∇θL = 0. Thus, with no further gradient up-
dates possible, our model is parameterized by θT after
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Figure 3: Plot of q̃τ as training progresses in the toy
example of Fig. 2b. The total number of training steps
is T = 1000, such that τ ∈ [0, T − 1]. In the top
row, blue particles are samples from q′ while orange
particles are samples from q̃τ at specific training steps.
Left: τ = 10, center: τ = 40, right: τ = 1000. In the
bottom row, we plot the trajectory of the mean of q̃τ
as training progresses.

convergence. We can now analyze what happens when
sampling from our trained model with parameters θT .

In our framework, we sample from our trained model
by flowing for a total of K+κ steps. This sampling can
be viewed as two stages (K “bridging” steps, followed
by κ refinement steps). To elaborate, in the first stage,
we sample as before by running Eq. 9 for K steps us-
ing our trained model rθT . The samples from stage 1
will be drawn from q̃T (xK) =

∫
q′(x′)MθT (xK |x′)dx′.

Based on empirical evidence from our toy example in
Fig. 3 and image experiments in Sec. 6.2, q̃T (xK) is
closer to the data distribution p(x). Interestingly, we
can introduce a second refinement stage. Recall that
convergence in the Bregman divergence, ∇θL = 0, im-
plies that our density ratio estimator has converged
to the value rθT (x) = q̃T−1/p. Since after the first
stage, we have samples from q̃T (x), and an estimator
rθT (x) = q̃T−1/p ≈ q̃T /p (assuming the change in θ in
the final training step is small), we can perform sample
refinement in exactly the formalism of DGf low by run-
ning the same Eq. 9 for a further κ steps. We provide
pseudocode for sampling in Algorithm 2 and justify the
two-stage sampling scheme with ablations in Sec. 6.3.



Figure 4: Samples from FDRL-DDP on CIFAR10 322, CelebA 642 and LSUN Church 1282 using LSIF-χ2. More
results using various BD objectives and f -divergences can be found in Appendix.

Algorithm 1 Training

repeat
Sample xp ∼ p(x),x0 ∼ q′(x)
for j ← 1,K do
Obtain xK from x0 by simulating Eq. 9.

end for
Update θ according to

∇θ[g′(rθ(xp))r(xp)− g(rθ(xp))− g′(rθ(xK))]

until converged

Algorithm 2 Sampling

Sample x0 ∼ q′(x)
for j ← 1,K + κ do
Obtain xK+κ from x0 by simulating Eq. 9.

end for
return xK+κ

5. Related Works

Gradient flows are a general framework for con-
structing the steepest descent curve of a given func-
tional, and consequently have been used in optimiz-
ing a variety of distance metrics, ranging from the
f -divergence [10, 9, 1, 7], maximum mean discrep-
ancy [2, 16], Sobolev distance [17] and related forms
of the Wasserstein distance [13].

Two well-known methodologies to simulate Wasser-
stein gradient flows are population density approaches
such as the JKO scheme [11] and particle-based ap-
proaches. The former requires computation of the
2-Wasserstein distance and a free energy functional,

which are generally intractable. As such, several
works have proposed approximations leveraging Bre-
nier’s theorem [15] or the Fenchel conjugate [7].

More closely related to our method are particle ap-
proaches, which involve simulating the SDE Eq. 3.
DGf low [1] leverages GAN discriminators as a stale
density ratio estimator for sample refinement. Our
method is inspired by the stale formulation of DGf low,
but we extend it to the general case of sample gener-
ation. In fact, DGf low is a specific instance of FDRL
where we fix the prior q′ to be the implicit distribution
defined by the GAN generator. Euler Particle Trans-
port (EPT) [9] similarly trains a deep density ratio es-
timator using the Bregman divergence. However, EPT
was only shown to be effective in the latent space and
thus necessitated the training of an additional gener-
ator network. Our method is able to scale directly in
the data space, with no need for additional generator
networks.

6. Experiments

6.1. Setup

We test FDRL with unconditional generation on
32×32 CIFAR10, 64×64 CelebA and 128×128 LSUN
Church datasets, class-conditional generation on CI-
FAR10 and image-to-image translation on 64×64
Cat2dog dataset. We label experiments with the DDP
as FDRL-DDP, and ablation experiments with a uni-
form prior as FDRL-UP. We use modified ResNet ar-
chitectures for all experiments in this study. See Ap-
pendix E for more details.



Table 1: CIFAR10 and CelebA scores.

Model FID ↓
CIFAR10 32 × 32
EPT [9] 24.6
JKO-Flow [7] 23.7
IGEBM [5] 40.58
SNGAN [14] 21.7
PixelCNN [29] 65.93
NVAE [28] 51.67
NCSN [23] 25.32
FDRL-DDP (LSIF-χ2) 22.28
FDRL-DDP (LR-KL) 22.61
FDRL-DDP (LR-JS) 22.80
FDRL-DDP (LR-logD) 22.82
FDRL-UP (LSIF-χ2) 30.23
FDRL-UP (LR-KL) 31.99
CelebA 64 × 64
NCSN [23] 26.89
NVAE [28] 14.74
EBM-SR [19] 23.02‡

FDRL-DDP (LSIF-χ2) 17.77
FDRL-DDP (LR-KL) 18.09

6.2. Unconditional Image Generation

In Fig. 4, we show uncurated samples of FDRL-
DDP on different combinations of g and f -divergences,
where the combinations are chosen due to numerical
compatibility (see Appendix B). Visually, our model
is able to produce high-quality samples on a variety of
datasets up to resolutions of 128×128, surpassing exist-
ing gradient flow techniques [9, 7]. Samples with other
f -divergences can be found in Appendix G. In Table 1,
we show the FID scores of FDRL-DDP in comparison
with relevant baselines utilizing different generative ap-
proaches. On CIFAR10, the best FDRL-DDP (LSIF-
χ2) performs comparably with SNGAN, while outper-
forming the baseline EBM, score-based NCSN and au-
toregressive PixelCNN. Our method also outperforms
gradient flow baselines such as EPT and JKO-Flow,
showcasing that the stale estimate approximation is ca-
pable of generating high quality images. For CelebA,
FDRL is outperformed by the state-of-the-art varia-
tional autoencoder NVAE, but strongly outperforms
NCSN and Short-Run EBM.

To provide intuition for the flow process, we provide
intermediate samples for the LSUN Church dataset in
Fig. 8 of the appendix, which visualizes how samples
drawn from the DDP are evolved to a high quality sam-
ple. In this scenario, the prior contains low frequency
features such as the color of the sky and rough silhou-

‡Score as reported in Ref. [8].

100 105 110 115 120 125 130
Flow Length

23

24

25

26

FI
D

Figure 5: FID as a function of the total flow length
on CIFAR10 for LSIF-χ2 DDP when sampling from a
model trained with K = 100.

ette of the building, while the flow process generates
higher frequency details necessary to create a realistic
image. We also visualize samples obtained by interpo-
lating in the prior space for CelebA in Fig. 9 of the
appendix. Despite the use of a data-dependent prior,
the model is able to smoothly interpolate in the latent
space, indicating the model has learnt a semantically
relevant latent representation that is characteristic of
a valid generative model. Finally, to verify that our
model has not merely memorized the dataset, particu-
larly as the prior is fitted from data, we show nearest
neighbor samples of the generated images in the train-
ing set in Appendix F. We can clearly see that samples
produced by FDRL-DDP are distinct from their clos-
est training samples, which tells us that FDRL-DDP is
capable of generating new and diverse samples beyond
the data it was trained on.

6.3. Ablations

Data-Dependent Prior vs Uniform Prior We
motivate the use of the data-dependent prior in con-
junction with FDRL by conducting ablations with q′

being a uniform prior (UP), x0 ∼ U [−1, 1]. We train
UP runs for 20% more training steps than DDP runs,
but keep all other hyperparameters unchanged for con-
trol. We include qualitative samples of FDRL-UP in
Fig. 21 in the appendix. Table 1 reports the quantita-
tive scores. Visually, FDRL-UP produces diverse and
appealing samples even with a uniform prior. How-
ever, the quantitative scores are significantly poorer
than using the DDP, which validates our hypothesis in
Sec. 3.2.

Length of Flow vs Image Quality Fig. 5 illus-
trates the relationship between total flow length and
FID. Although the model is trained with K = 100,



Figure 6: Class-conditional samples obtained by com-
posing an unconditional FDRL with a pretrained ro-
bust classifier.

sampling with K steps at testing does not produce
the best image quality, as sampling with an additional
κ = 20 steps yields the best FID score. This supports
the two-stage sampling approach discussed in Sec. 4.1.
First, K = 100 steps of the flow are run to sample im-
ages from q̃T (xK), followed by κ = 20 additional steps
of the same Eq. 9 using the estimator rθT ≈ q̃T /p for
sample refinement, as done in DGf low.

6.4. Conditional Image Generation

We can sample from target densities different from
what FDRL was trained on by simply composing den-
sity ratios. Consider a multiclass classifier which clas-
sifies a given image into one of N classes. We show
in Appendix D that we can express such classifiers as
a density ratio p(y = n|x) = N−1p(x|y = n)/p(x).
Thus, we can obtain a conditional density ratio esti-
mator rθ(x|y = n) = qT (x)/p(x|y = n) by composing
our unconditional estimator rθ(x) with the classifier
output (see Appendix D):

rθ(x|y = n) =
1

N
rθ(x)p(y = n|x)−1. (12)

When rθ(x|y = n) is used in the flow in Eq. 9, we per-
form class-conditional generation. This is conceptually
similar to the idea proposed in [25, 4], where an uncon-
ditional score model ∇x log pt(x(t)) is composed with
a time-dependent classifier ∇x log pt(y|x(t)) to form
a class-conditional model. However, whereas [25] re-
quires separately training a time-dependent classifier,
our formulation allows the use pretrained classifiers off-
the-shelf, with no further retraining. Inspired by ear-
lier work on image synthesis with robust classifiers [22],

Figure 7: Image-to-image translation process from cat
to dog images using FDRL.

we found that using a pretrained adversarially-robust
classifier was necessary in obtaining useful gradients for
generation. We show our results in Fig. 6, where each
row represents conditional samples of each class in the
CIFAR10 dataset.

6.5. Unpaired Image-to-image Translation

FDRL can also be seamlessly applied to unpaired
image-to-image-translation (I2I). We simply fix the
prior distribution q′(x) to a source image domain and
p(x) to a target domain. We then train the model in
exactly the same manner as unconditional generation
using Algorithm 1.

The I2I model is tested on the Cat2dog dataset [12].
From Fig. 7, FDRL is able to smoothly translate im-
ages of cats to dogs while preserving relevant features,
such as the background colors, pose and facial tones.
For instance, a cat with light fur is translated to a
dog with light fur. Quantitatively, the I2I baseline Cy-
cleGAN [31] achieves better FID scores than FDRL
(Appendix Table 4). However, like many I2I meth-
ods [12, 3, 30, 18], CycleGAN relies on specific induc-
tive biases, such as dual generators and discriminators,
and cycle-consistency loss. Future work could explore
incorporating these biases into FDRL to improve trans-
lation performance.

7. Conclusion

We propose FDRL, a method that enables the sim-
ple stale approximation of the gradient flow SDE to
be applied to generative modeling of high-dimensional
images. Beyond unconditional image generation, the
FDRL framework can be seamlessly adapted to other
key applications, including class-conditional genera-



tion and unpaired image-to-image translation. Future
work could focus on theoretically characterizing the ex-
act distribution induced by the stale SDE of Eq. 5
and further improving our understanding of its con-
vergence properties. Such efforts will provide greater
insight into the efficacy of the simple stale approxima-
tion and inform the necessity of complex approximation
schemes employed by competing gradient flow baselines
for practical generative modeling applications.
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A. Toy Datasets

To affirm that samples generated by FDRL indeed
converge to the target distribution, we train FDRL on
the synthetic 2DSwissroll dataset. The density ratio es-
timator is parameterized by a simple feedforward mul-
tilayer perceptron. We train the model to flow samples
from the prior q′(x) = N (0, I) to the target distribu-
tion, which we sample from the make swiss roll func-
tion in scikit-learn. We plot the results in Fig. 10,
from which we can see that the model indeed recovers
p(x) successfully for all combinations of f and g.

B. Bregman Divergence and f-
divergence Pairing

We elucidate the full forms of the Bregman diver-
gences here. The LSIF objective g(y) = 1

2 (y − 1)2 is
given as

LLSIF (θ) =
1

2
Êp[rθ(x)]2 − Êqτ [rθ(x)], (13)

while the LR objective g(t) = y log y−(1+y) log(1+y)
is given as

LLR(θ) = −Êp
[
log

1

1 + rθ(x)

]
− Êqτ

[
log

rθ(x)

1 + rθ(x)

]
.

(14)

When computing the LR objective, we find that we
run into numerical stability issues when letting rθ(x)
be the output of an unconstrained neural network and
subsequently taking the required logarithms in Eq. 14.
To circumvent this issue, we let rθ(x) be expressed as
the exponential of the neural network’s output, i.e., the
output of the neural network is log rθ(x). This formu-
lation naturally lends itself to the flow of the KL, JS
and logD divergences, whose first derivatives f ′ that
is required in Eq. 9 are also logarithmic functions of
rθ(x), as seen from Table. 2. We can thus utilize
numerically stable routines in existing deep learning
frameworks, avoiding the need for potentially unsta-
ble operations like exponentiations (see Appendix C
for details). As such, we pair LR with the aforemen-
tioned divergences and abbreviate the combinations as
LR-KL, LR-JS, LR-logD. We did not run into such
stability issues for the LSIF objective (Eq. 13) as the
model learns to automatically output a non-negative
scalar over the course of training, hence for LSIF we
allow the neural network to estimate rθ(x) directly and
pair it with the Pearson-χ2 divergence. We abbreviate
this pairing as LSIF-χ2.

C. Stable Computation of LR and f-
divergences

As mentioned in Sec. B, computing the logarithm
of unconstrained neural networks leads to instabilities
in the training process. This is a problem when com-
puting the LR objective in Eq. 14 and the various
first derivatives of f -divergences. We can circumvent
this by letting rθ(x) be expressed as the exponential
of the neural network and use existing stable numer-
ical routines to avoid intermediate computations that
lead to the instabilities (for example, computing loga-
rithms and exponentials directly). Let us express the
neural network output as NNθ(x) , log rθ(x). The LR
objective can then be rewritten as

LLR(θ) = −Êp
[
log

1

1 + rθ(x)

]
− Êqτ

[
log

rθ(x)

1 + rθ(x)

]
(15)

= −Êp [LS(−NNθ(x))]− Êqτ [LS(NNθ(x))]
(16)

where LS(x) = log 1
1+exp(−x) , the log-sigmoid func-

tion, which has stable implementations in modern deep
learning libraries.

Similarly for the f -divergences whose first deriva-
tives involve logarithms, we can calculate them stably
as

f ′KL(rθ(x)) = log rθ(x) + 1 = NNθ(x) + 1 (17)

f ′JS(rθ(x)) = log
2rθ(x)

1 + rθ(x)
= log 2 + LS(NNθ(x))

(18)

f ′logD(rθ(x)) = log(rθ(x) + 1) + 1 = −LS(−NNθ(x)) + 1.

(19)

D. Classifiers are Density Ratio Estima-
tors

To perform class-conditional generation in the
FDRL framework, we would like to estimate the den-
sity ratio of a certain class over the data distribution:
p(x|y = n)/p(x). With Bayes rule, we can write this
as

p(x|y = n)

p(x)
=
p(y = n|x)p(x)/p(y = n)

p(x)
(20)

=
p(y = n|x)

p(y = n)
. (21)

The denominator term p(y = n) can be viewed as a
constant, e.g. assume the N classes are equally dis-
tributed, then p(y = n) = 1/N . Therefore, we have



Figure 8: Illustration of the flow process for LSUN Church, starting from a sample from the data-dependent prior
on the leftmost column.

Figure 9: Interpolation results between leftmost and rightmost samples with CelebA.

that the class probability given by the softmax output
of a classifier is actually a density ratio:

Np(y = n|x) =
p(x|y = n)

p(x)
. (22)

We can use this equation to convert an unconditional
FDRL to a class-conditional generator. Recall the stale
approximation of the gradient flow:

dxt = −∇xf
′(rθ(xt))dt+

√
2γdwt (23)

Consider the case where we have a trained uncondi-
tional FDRL estimator rθ. We can multiply the inverse
of the classifier output with rθ(xt) = q̃τ (xt)/p(xt) to
get a density ratio between q̃τ (xt) and the conditional
data distribution p(xt|y = n):

rθ(xt)p(y = n|xt)−1 =
q̃τ (xt)

p(xt)

Np(xt)

p(xt|y = n)

= N
q̃τ (xt)

p(xt|y = n)
.

That is, we took our unconditional model and con-
verted it to a conditional generative model by compos-
ing it with a pretrained classifier. To get the correct
class-conditional density ratio that can be used for gen-
eration, we should therefore compute

rθ(xt|y = n) =
1

N
rθ(xt)p(y = n|xt)−1 (24)

and use this conditional density ratio estimator in our
sampling method of Algorithm Eq. 2.

E. Experimental Details

Unconditional Image Generation. For all
datasets, we perform random horizontal flip as a form
of data augmentation and normalize pixel values to
the range [-1, 1]. For CelebA, we center crop the
image to 140×140 before resizing to 64×64. For LSUN
Church, we resize the image to 128×128 directly. We
use the same training hyperparameters across all three
datasets, which is as follows. We train all models
with 100000 training steps with the Adam optimizer
with a batch size of 64, excepet for CIFAR10 with
uniform prior where we trained for 120000 steps.
We use a learning rate of 1 × 10−4 and decay twice
by a factor of 0.1 when there are 20000 and 10000
remaining steps. We set the number of flow steps
to K = 100 at training time. When sampling, we
set κ = 20 for all DDP experiments and κ = 10
for UP experiments. Other flow hyperparameters
include a step size of η = 3 and noise factor ν = 10−2.
The specific ResNet architectures are given in Table
3. We update model weights using an exponential
moving average [24] given by θ′ ← mθ′ + (1 − m)θi,
where θi is the parameters of the model at the i-th
training step, and θ′ is an independent copy of the
parameters that we save and use for evaluation. We
set m = 0.998. We use the LeakyReLU activation
for our networks with a negative slope of 0.2. We
experimented with spectral normalization and self
attention layers for unconditional image generation,
but found that training was stable enough such that
they were not worth the added computational cost.
The FID results in Table 1 are obtained by generating



Figure 10: Comparison of different FDRL pairings of Bregman and f -divergences on the 2DSwissroll dataset.

Table 2: f -divergences and their first derivatives f ′.

f -divergence f f ′

Pearson-χ2 (r − 1)2 2(r − 1)
KL r log r log r + 1
JS r log r − (r + 1) log r+1

2 log 2r
r+1

log D (r + 1) log(r + 1)− 2 log 2 log(r + 1) + 1

50000 images, and testing the results against the
training set for both CIFAR10 and CelebA.

Conditional Generation with Robust Classifier.
The unconditional model used for conditional genera-
tion is the same model obtained from the section above.
The pretrained robust classifier checkpoint is obtained
from the robustness∗ Python library [6]. It is based on
a ResNet50 architecture and is trained with L2-norm
perturbations of ε = 1.

We choose the LR-KL variant for our results in Fig.
6. This means that our conditional flow is given by

xk+1 = xk − 2η∇x log

(
rθ(xk) ∗ 1

N
p(y = n|xk)−1

)
+ νξk

(25)

= xk − 2η∇x (log rθ(xk)− φ log p(y = n|xk)) + νξk
(26)

where in the second line we introduce φ as a parameter
that scales the magnitude of the classifier’s gradients
so they are comparable to the magnitude of FDRL’s
gradients. We use φ = 0.1.

Unpaired Image-to-image Translation. The
Cat2dog dataset contains 871 Birman cat images and
1364 Samoyed and Husky dog images. 100 of each are
set aside as test images. We first resize the images
to 84×84 before center cropping to 64×64. Due to
the relatively small size of the dataset, we use a
shallower ResNet architecture as compared to CelebA
642 despite the same resolution (Table 3) to prevent

∗https://github.com/MadryLab/robustness

overfitting. We also utilize spectral normalization
and a self attention layer at the 128-channel level
to further boost stability. We set K = 100 during
training and K = 110 at test time. As we observed the
model tends to diverge late in training, we limit the
number of training steps to 40000, with a decay factor
of 0.1 applied to the learning rate at steps 20000 and
30000. All other hyperparameters are kept identical
to the experiments on unconditional image generation.
We report results for LSIF-χ2, although we have
experimented with LR-KL and found performance to
be similar. The FID result in Table. 4 is obtained by
translating the 100 test cat images, and testing the
results against the 100 test dog images.



Table 3: Network structures for the density ratio estimator rθ(x).

CIFAR10
3×3 Conv2d, 128
3 × ResBlock 128

ResBlock Down 256
2 × ResBlock 256

ResBlock Down 256
2 × ResBlock 256

ResBlock Down 256
2 × ResBlock 256

Global Mean Pooling
Dense → 1

CelebA 64
3×3 Conv2d, 64

ResBlock Down 64
ResBlock Down 128

ResBlock 128
ResBlock Down 256

ResBlock 256
ResBlock Down 256

ResBlock 256
Global Mean Pooling

Dense → 1

LSUN Church 128
3×3 Conv2d, 64

ResBlock Down 64
ResBlock Down 128
ResBlock Down 128

ResBlock 128
ResBlock Down 256

ResBlock 256
ResBlock Down 256

ResBlock 256
Global Mean Pooling

Dense → 1

Cat2dog 64
3×3 Conv2d, 64

ResBlock Down 64
ResBlock Down 128
Self Attention 128

ResBlock Down 128
ResBlock Down 256

Global Mean Pooling
Dense → 1

Table 4: FID scores for image-to-image translation with the Cat2dog dataset.

Model FID ↓
FDRL 108.10
CycleGAN 51.79

(a) (b) (c)

Figure 11: Samples drawn from the data-dependent priors of (a) CIFAR10 322, (b) CelebA 642 and (c) LSUN
Church 1282.



F. Nearest Neighbors

(a) (b)

Figure 12: Nearest neighbor images for CIFAR10 as measured by L2 distance in (a) the feature space of an Inception
V3 network pretrained on ImageNet and (b) data space. The column to the left of the red line are samples from
FDRL LSIF-χ2. The images to the right of the line are the 10 nearest neighbors in the training dataset.

(a) (b)

Figure 13: Nearest neighbor images for CelebA as measured by L2 distance in (a) the feature space of an Inception
V3 network pretrained on ImageNet and (b) data space. The column to the left of the red line are samples from
FDRL LSIF-χ2. The images to the right of the line are the 10 nearest neighbors in the training dataset.



G. Uncurated Samples FDRL-DDP

Figure 14: Uncurated samples of CIFAR10 LSIF-χ2.

Figure 15: Uncurated samples of CIFAR10 LR-KL.



Figure 16: Uncurated samples of CIFAR10 LR-JS.

Figure 17: Uncurated samples of CIFAR10 LR-logD.

Figure 18: Uncurated samples of CelebA LSIF-χ2.



Figure 19: Uncurated samples of CelebA LR-KL.

Figure 20: Uncurated samples of LSUN Church LSIF-χ2.



H. Uncurated Samples FDRL-UP

(a) LSIF-χ2 uniform prior. (b) LR-KL uniform prior.

Figure 21: Uncurated CIFAR10 samples with FDRL-UP.


